MATH 141 Midterm 2

November 15, 2022

NAME (please print legibly): \qquad

Your University ID Number:

Pledge of Honesty

I affirm that I will not give or receive any unauthorized help on this exam, and that all work will be my own.

Signature:

Enter your answers where indicated in order to receive credit. Calculators and notes are not permitted. If you are confused about the wording of a question or need a clarification, you should raise your hand and ask a proctor about it.
Unless otherwise indicated, you must show all work to justify your answers and receive full credit.

1. (15 points)

Let

$$
f(x)=\frac{2 x^{k}+x^{3}-2}{3 x^{4}-2 x}
$$

(a) Find all values of k so that $\lim _{x \rightarrow \infty} f(x)=0$, or explain why this is not possible.
$f(x)=x^{k}\left(2+\frac{x^{3}}{x^{k}}-\frac{2}{x^{k}}\right)$
$x^{4}\left(3-\frac{2 x}{x^{4}}\right)$
$=x^{k-4}\left(\frac{2+\frac{x^{3}}{x^{k}}-\frac{2}{x^{k}}}{3-\frac{2}{x^{3}}}\right)$
Then the limit at ∞ of f depelson whether $k-4>0, k-4<0$, or $k-4=0$.
If $k-4<0$, the lit will be zero.
(b) Find all values of k so that $\lim _{x \rightarrow \infty} f(x)=\infty$, or explain why this is not possible.

$$
\begin{aligned}
& \text { Using the work in part }(a) \text {, } \\
& \text { we can see that if } k-4>0 \text {, } \\
& \text { weill have an infinite limit. }
\end{aligned}
$$

Answer:	
	$k>4$

(c) Find all values of k so that $\lim _{x \rightarrow \infty} f(x)=\frac{2}{3}$, or explain why this is not possible.

$$
\begin{array}{l|}
\quad \text { Again using (a), if } k-4=0, \quad \begin{array}{|l|}
\text { Answer: } \\
k=4 \\
\lim _{x \rightarrow \infty} x^{k-4}\left(\frac{2+\frac{x^{3}}{x^{4}}-\frac{2}{x^{4}}}{3-\frac{2}{x^{3}}}\right) \\
=\lim _{x \rightarrow 0} \frac{2+\frac{1}{x}-\frac{2}{x^{4}}}{3-\frac{2}{x^{3}}}=\frac{2}{3}
\end{array}
\end{array}
$$

2. (10 points) Suppose we use the following limit to determine the derivative of a function $f(x)$ at $x=a$.

$$
\lim _{h \rightarrow 0} \frac{\sqrt{4+h}-2}{h}
$$

(a) What is the function $f(x)$ and the number a ? The definition of the derivative is as follows:
$\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}=f^{\prime}(a)$.
Equation like parts, $f(a+h)=\sqrt{4+h}$ ane $f(a)=2$. Here $f(x)=\sqrt{x}$, and $a=4$.

$$
\begin{aligned}
& \text { Answer: } \\
& f(x)=\sqrt{x} \\
& a=4
\end{aligned}
$$

(b) Find the derivative $f^{\prime}(a)$ using any method you wish.

$$
\begin{aligned}
& \text { We could take this limit, but it's easier to use } \\
& \text { the power rule. } \\
& f(x)=x^{\frac{1}{2}} \\
& f^{\prime}(x)=\frac{1}{2} x^{-\frac{1}{2}}=\frac{1}{2 \sqrt{x}} \\
& f^{\prime}(4)=\frac{1}{2 \sqrt{4}}=\frac{1}{4}
\end{aligned}
$$

Answer:
$f^{\prime}(4)=\frac{1}{4}$

3. (20 points) Suppose that the functions f and g satisfy the following:

x	$f(x)$	$g(x)$	$f^{\prime}(x)$	$g^{\prime}(x)$
1	$-\pi$	-2	2	3
2	1	7	5	4

(a) Let $h(x)=3 f(x)-3 g(x)+3$. Find $h^{\prime}(2)$.

```
h'(x)=3\mp@subsup{f}{}{\prime}(x)-3\mp@subsup{g}{}{\prime}(x)+0
h'(2)=3(5)-3(4)=3
```

Answer:
3

(b) Let $h(x)=\frac{f(x)}{g(x)}$. Find $h^{\prime}(2)$.

$$
\begin{aligned}
& \text { well reed the quotient vale. } \\
& h^{\prime}(x)=\frac{g(x) f^{\prime}(x)-f(x) g^{\prime}(x)}{[g(x)]^{2}}
\end{aligned}
$$

$h^{\prime}(2)=\frac{(7)(5)-(1)(4)}{49}=\frac{31}{49}$

Answer:
$\frac{31}{49}$

(c) Let $h(x)=(g \circ f)(x)$. Find $h^{\prime}(2)$.

Using the chain rule
$h^{\prime}(x)=g^{\prime}(f(x)) f^{\prime}(x)$
$h^{\prime}(2)=g^{\prime}(f(2)) f^{\prime}(2)$
$=g^{\prime}(1)(5)$
$=(3)(5)$

Answer:
15

(d) Let $h(x)=e^{f(x) g(x)}$. Find $h^{\prime}(2)$.
will need the chain rule and the product rule. $h^{\prime}(x)=e^{f(x) g(x)}\left[f^{\prime}(x) g(x)+g^{\prime}(x) f(x)\right]$
$n^{\prime}(2)=e^{(1)(7)}[(5)(7)+(4)(1)]$
$=e^{7}(39)$

Answer:
$39 e^{7}$

4. (10 points) Determine the derivative of the following functions. You do not have to simplify. Circle your final answer.
(a) $f(x)=e^{x} \ln (x)+\tan (x)$

$$
f^{\prime}(x)=e^{x}\left(\frac{1}{x}\right)+(\ln x)\left(e^{x}\right)+\sec ^{2}(x)
$$

(b) $h(z)=2^{z}+z^{\sqrt{2}}+e^{2}+2^{\pi}$

$$
h^{\prime}(z)=2^{z} \ln 2+\sqrt{2} z^{\sqrt{2}-1}+0
$$

5. (20 points) Determine the derivatives of the following functions. You do not have to simplify. Circle your final answer.
(a) $f(x)=5 e^{x^{3}}+\ln (\ln x)$

$$
\begin{aligned}
f^{\prime}(x) & =5 e^{x^{3}}\left(3 x^{2}\right)+\frac{\frac{1}{x}}{\ln x} \\
& =15 e^{x^{3}} x^{2}+\frac{1}{x \ln x}
\end{aligned}
$$

(b) $g(t)=\ln \left(t e^{-2 t}\right)$

$$
\begin{aligned}
& =\ln t+\ln \left(e^{-2 t}\right) \\
& =\ln t-2 t \\
g^{\prime}(t) & =\frac{1}{t}-2
\end{aligned}
$$

(c) $h(z)=\left(5 z^{2}-6 z\right)^{9}\left(z^{3}+7\right)$

$$
h^{\prime}(z)=\left(5 z^{2}-6 z\right)^{9}\left(3 z^{2}\right)+9\left(5 z^{2}-6 z\right)^{8}(10 z-6)\left(z^{3}+7\right)
$$

(d) $k(w)=\cos \left(\sqrt{w^{5}+3 w^{2}}\right)$

$$
\begin{aligned}
& k(w)=\cos \left(\sqrt{w^{5}}+3 w^{2}\right) \\
& k^{\prime}(\omega)=-\sin \left(\sqrt{\omega^{5}+3 \omega^{2}}\right)\left(\frac{1}{2}\right)\left(\omega^{5}+3 \omega^{2}\right)^{-\frac{1}{2}}\left(5 \omega^{4}+6 \omega\right)
\end{aligned}
$$

6. (15 points) Determine an equation for the line tangent to the curve satisfying

$$
x^{2}+x y=x+3 \sin (y)
$$

at the point $(1,0)$.
Toking the derivative implicitly,

$$
2 x+x y^{\prime}+y=1+3 \cos (y) y^{\prime}
$$

Let $x=1, y=0$

$$
\begin{aligned}
2+y^{\prime}+0 & =1+3(1) y^{\prime} \\
1 & =2 y^{\prime} \\
y^{\prime} & =\frac{1}{2}
\end{aligned}
$$

Lune:

$$
\begin{aligned}
& y-0=\frac{1}{2}(x-1) \\
& \text { or } y=\frac{1}{2} x-\frac{1}{2}
\end{aligned}
$$

Answer:

$$
y=\frac{1}{2} x-\frac{1}{2}
$$

7. (10 points) Let $g(x)=\left(x^{2}+1\right)^{x}$. Find $g^{\prime}(x)$. (Hint: Use logarithmic differentiation.)

$$
\begin{aligned}
\ln (g(x)) & =\ln \left[\left(x^{2}+1\right)^{x}\right] \\
& =x \ln \left(x^{2}+1\right)
\end{aligned}
$$

Taking the derivative implicitly:

$$
\begin{aligned}
\frac{g^{\prime}(x)}{g(x)} & =x\left(\frac{2 x}{x^{2}+1}\right)+\ln \left(x^{2}+1\right) \\
g^{\prime}(x) & =g(x)\left[\frac{2 x^{2}}{x^{2}+1}+\ln \left(x^{2}+1\right)\right] \\
& =\left(x^{2}+1\right)^{x}\left(\frac{2 x^{2}}{x^{2}+1}+\ln \left(x^{2}+1\right)\right)
\end{aligned}
$$

Answer:

$$
g^{\prime}(x)=\left(x^{2}+1\right)^{x}\left(\frac{2 x^{2}}{x^{2}+1}+\ln \left(x^{2}+1\right)\right)
$$

